Gene therapy restores vision after stroke: Study – ANI News

ANI | Updated: Oct 09, 2021 23:20 IST
Washington [US], October 9 (ANI): A research team led by Purdue University’s Alexander Chubykin, an associate professor of biological sciences in the College of Science, in collaboration with the team led by Gong Chen at Jinan University, China, has discovered a way to use gene therapy to turn glial brain cells into neurons, restoring visual function and offering hope for a way to restore motor function.
Researchers have figured out a way to use gene therapy to recover lost vision after a stroke in a mouse model.
The findings of the study were published in the journal ‘Frontiers in Cell and Developmental Biology’.
Most strokes happen when an artery in the brain becomes blocked. Blood flow to the neural tissue stops, and those tissues typically die. Because of the locations of the major arteries in the brain, many strokes affect motor function. Some affect vision, however, causing patients to lose their vision or find it compromised or diminished.
Neurons don’t regenerate. The brain can sometimes remap its neural pathways enough to restore some visual function after a stroke, but that process is slow, it’s inefficient, and for some patients, it never happens at all.

Stem cell therapy, which can help, relies on finding an immune match and is cumbersome and difficult. This new gene therapy, as demonstrated in a mouse model, is more efficient and much more promising.
“We are directly reprogramming the local glial cells into neurons. We don’t have to implant new cells, so there’s no immunogenic rejection. This process is easier to do than stem cell therapy, and there’s less damage to the brain,” Chubykin said.
“We are helping the brain heal itself. We can see the connections between the old neurons and the newly reprogrammed neurons get reestablished. We can watch the mice get their vision back,” Chubykin added.
Chubykin’s research is especially important because the visual function is easier than motor skills to measure accurately, using techniques including optical imaging in live mice to track the development and maturation of the newly converted neurons over the course of weeks.
Perfecting and understanding this technique could lead to a similar technique re-establishing motor function. This research bridges the gap in understanding between the basic interpretation of the neurons and the function of the organs. (ANI)

Gene therapy
Clinical study explains drug dosage when blood pressure needs more control
Updated: Oct 09, 2021 15:59 IST
Study suggests ways to reduce salt in baked goods
Updated: Oct 09, 2021 12:16 IST
Study finds screen time linked to risk of myopia in young people
Updated: Oct 08, 2021 23:00 IST
Excess deaths in people with mental health conditions increased during COVID-19 pandemic
Updated: Oct 08, 2021 19:15 IST
Iron deficiency in middle age linked with risk of developing heart disease: Study
Updated: Oct 08, 2021 14:15 IST
Study finds clean air matters for a healthy brain
Updated: Oct 07, 2021 13:09 IST
Study analyses pros, cons of common weight-loss surgeries
copyrights © | All rights Reserved